Najlepsze zastosowania machine learningu w codziennym życiu – część I - BPX

Zastosowania machine learning

Uczenie maszynowe towarzyszy nam na każdym kroku, choć nie zawsze zdajemy sobie z tego sprawę. Ułatwia nam życie podczas zakupów, podróżowania, podpowiada ciekawe utwory muzyczne i filmy, a nawet zapobiega wypadkom samochodowym, przestępstwom czy zawałom serca. W jaki sposób? Dzięki danym, oczywiście.

Uczenie maszynowe to obszar sztucznej inteligencji, która dzięki doświadczeniom (czyli ekspozycji na dane) jest w stanie automatycznie uczyć się, doskonalić, bardziej precyzyjnie interpretować dane oraz sytuacje, a w rezultacie przepowiadać przyszłość (oczywiście mamy na myśli predykcje z liczb, nie wróżenie z fusów lub gwiazd).

1. Ruch drogowy

Wczesne wykrywanie kolizji – samochody marki Tesla mają wbudowane kamery do monitorowania innych pojazdów, rowerzystów i uczestników ruchu. Dzięki komputerowi pokładowemu, sztucznej inteligencji i stałego podłączenia do Internetu (przez który łączą się z centralnymi serwerami Tesli), samochód jest w stanie ostrzec kierowcę przed zbliżającym się niebezpieczeństwem, a nawet zapobiec wypadkowi. Jak?
Kilkaset tysięcy samochodów tej marki codziennie przemierza łącznie kilka milionów kilometrów. Na podstawie rejestracji i analizy tak wielu obrazów, samochody „wiedzą”, że gdy pojazd przed nimi np. zbyt często i nierówno hamuje, albo zjeżdża lekko na pobocze – to może dojść do wypadku. Wówczas Tesla informuje kierowcę o niebezpieczeństwie i albo nakazuje zwolnić, albo automatycznie to robi, aby zwiększyć odległość od poprzedzającego go pojazdu.
To oczywiście zasługa serwera Tesli i samouczenia się maszyn, które na podstawie tysięcy zarejestrowanych nagrań są w stanie przewidzieć niebezpieczną sytuację na drodze lub wypadek zanim ten się wydarzy.

2. Zdrowie

Monitorowanie pracy serca – to przykład tożsamy z poprzednim, tyle że tutaj nie mamy kamery, a czujniki, które zbierają informacje o zachowaniu serca (częstotliwości uderzeń, itp.) pacjenta. Dzięki temu, że urządzenie do monitorowania pracy serca może komunikować się z serwerem firmy farmaceutycznej, która ją wyprodukowała, dane o pacjencie (oczywiście anonimowo) są porównywane z innymi wynikami z całego świata. Dzięki temu czujniki mogą w porę zaalarmować człowieka, że jego tętno zbliża się do niebezpiecznego poziomu, po którym może nastąpić np. wylew, zawał, lub po prostu zatrzymanie akcji serca. Tak niewielkich rozmiarów urządzenie może uratować życie.
Niecodzienne zachowania ciała – podobnie zresztą działają niektóre inteligentne opaski sportowe i inteligentne zegarki, które obserwując odstające od normy zachowanie ciała (przykładowo, ktoś zemdlał, albo porwała go lawina w górach i w błyskawicznym czasie przebył kilkaset metrów), może poinformować o tym wypadku konkretne osoby zapisane w książce telefonicznej lub automatycznie zadzwonić na numer ratunkowy 112 / 911. Jedną z takich sytuacji przedstawia w swojej reklamie Apple opowiadając o trzech historiach, które wydarzyły się naprawdę.

3. Zakupy online

Amazon, Allegro, Ceneo – praktycznie każdy większy sklep internetowy, portal aukcyjny, a nawet porównywarka cenowa korzysta z technologii uczenia maszynowego. Ogromną rolę odgrywają w tym słynne ciasteczka (cookies), które „zapamiętują” jakie strony przeglądaliśmy wcześniej, które sklepy odwiedzaliśmy i jakim produktom najdłużej się przyglądaliśmy. Nie wspominając o tym, co wcześniej po prostu kupiliśmy. Na podstawie takiej „mapy” zakupów, algorytmy potrafią wywnioskować jakie inne rzeczy mogłyby nam się przydać, spodobać, i jakie być może chcielibyśmy kupić. Takie sekcje na stronie jak „klienci kupili również”, „zazwyczaj kupowane razem”, lub „zobacz także” to teoretycznie może być podsumowanie koszyków zakupowych innych, poprzednich klientów sklepu… ale może to też być uszyta na miarę, w 100% pod nas, zachęta do zrobienia jeszcze większych zakupów, bo uczenie maszynowe potrafi przewidzieć (z różnym skutkiem) nasze zachowania i preferencje zakupowe. Jak widać, z machine learningiem w codziennym życiu jest jak z nożem – bywa pomocnym narzędziem, może też być narzędziem zbrodni. Wszystko zależy od nas, jak będziemy korzystać z funkcji samouczenia się maszyn.

4. Biznes

W biznesie, niezależnie od wielkości firmy, machine learning może zrewolucjonizować pracę kilku działów, a nawet całej firmy. Analizując dane organizacji (sprzedaż, logistyka, finanse, marketing, itd.) uczenie maszynowe może przewidzieć np.:

  • ile śladu węglowego wytworzymy przy produkcji lub transporcie
  • w którym momencie zużyje się część na hali produkcyjnej
  • o ile podrożeją lub stanieją materiały do produkcji
  • jak będzie się zmieniać cena i popyt na konkretny produkt
  • i nie tylko!

Uczenie maszynowe pomaga analitykom dostrzec obszary wcześniej niezbadane lub przeoczone, a wszystko to – na bieżąco, w czasie rzeczywistym. I choć należy przy tym pamiętać, że sztuczna inteligencja wciąż się uczy np. kreatywności (albo odróżniania psa od muffinki) i potrzebuje wsparcia człowieka, to jest dla każdego analityka lub użytkownika biznesowego nieocenionym wsparciem.

Z tego powodu przygodę z machine learningiem lepiej jest rozpocząć z zaufanym Partnerem, takim jak BPX. Jeśli chcesz sprawdzić jak uczenie maszynowe może pomóc Twojej firmie, skontaktuj się z nami: bpx@bpx.pl

Dowiedz się więcej o narzędziach do machine learningu: https://www.bpxglobal.com/solution/altair/

 

Autor:
Kamil Skuza

Zdjęcia:

https://unsplash.com/photos/X_roZ7toBJY 

https://unsplash.com/photos/TDfMJT78J70

https://unsplash.com/photos/rCOWMC8qf8A

https://unsplash.com/photos/N__BnvQ_w18

https://pl.freepik.com/

 

Poprzedni wpis: Sztuczna inteligencja w handlu – do czego nas przyzwyczaiła?